Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(1): 29, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183427

RESUMO

KEY MESSAGE: OsSWEET1b is a hexose transporter protein, which localized in cell membranes and interacting with itself to form homodimer and knockout of OsSWEET1b resulted in reduced leaves sugar content and accelerating leaf senescence. In the rice genome, the SWEET gene family contains 21 homologous members, but the role of some of them in rice growth and development is still unknown. The function of the sugar transporter OsSWEET1b protein in rice was identified in this research. Expression analysis showed that the expression levels of OsSWEET1b in leaves were higher than that in other tissues. The hexose transport experiment confirmed that OsSWEET1b has glucose and galactose transporter activity in yeast. Subcellular localization indicates that OsSWEET1b protein was targeted to the plasma membrane and BiFC analysis showed that OsSWEET1b interacts with itself to form homodimers. Functional analysis demonstrated that the ossweet1b mutant plants were have reduced the sucrose, glucose, fructose, starch and galactose contents, and induced carbon starvation-related gene expression, which might lead to carbon starvation in leaves at filling stage. The ossweet1b knockout plants showed decreased chlorophyll content and antioxidant enzyme activity, and increased ROS accumulation in leaves, leading to leaf cell death and premature senescence phenotype at filling stage. In ossweet1b mutants, the leaf senescence-related gene expression levels were increased and the abundance of photosynthesis-related proteins was decreased. Loss of OsSWEET1b were affected the starch, sucrose metabolism and carbon fixation in photosynthetic organelles pathway by RNA-seq analysis. The destruction of OsSWEET1b function will cause sugar starvation, decreased photosynthesis and leaf senescence, which leading to reduced rice yield. Collectively, our results suggest that the OsSWEET1b plays a key role in rice leaves carbohydrate metabolism and leaf senescence.


Assuntos
Galactose , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Monossacarídeos/genética , Senescência Vegetal , Metabolismo dos Carboidratos , Glucose , Antioxidantes , Carbono , Membrana Celular , Amido , Sacarose
2.
Plant Cell Rep ; 42(2): 421-431, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576552

RESUMO

KEY MESSAGE: OsPPR11 belongs to the P-type PPR protein family and can interact with OsCAF2 to regulate Group II intron splicing and affect chloroplast development in rice. Pentatricopeptide repeat (PPR) proteins participate in chloroplasts or mitochondria group II introns splicing in plants. The PPR protein family contains 491 members in rice, but most of their functions are unknown. In this study, we identified a nuclear gene encoding the P-type PPR protein OsPPR11 in chloroplasts. The qRT-PCR analysis demonstrated that OsPPR11 was expressed in all plant tissues, but leaves had the highest expression. The osppr11 mutants had yellowing leaves and a lethal phenotype that inhibited chloroplast development and photosynthesis-related gene expression and reduced photosynthesis-related protein accumulation in seedlings. Moreover, photosynthetic complex accumulation decreased significantly in osppr11 mutants. The OsPPR11 is required for ndhA, and ycf3-1 introns splicing and interact with CRM family protein OsCAF2, suggesting that these two proteins may form splicing complexes to regulate group II introns splicing. Further analysis revealed that OsCAF2 interacts with OsPPR11 through the N-terminus. These results indicate that OsPPR11 is essential for chloroplast development and function by affecting group II intron splicing in rice.


Assuntos
Proteínas de Plantas , Cloroplastos/metabolismo , Íntrons/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Splicing de RNA/genética , Oryza
3.
Ying Yong Sheng Tai Xue Bao ; 23(1): 235-9, 2012 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-22489504

RESUMO

Various phosphate-solubilizing bacterial strains were isolated from the Hippochaete ramosissimum rhizosphere in Tongguanshan copper tailings in Tongling of Anhui Province, East China. After many times of screening and purification, a strain B25 with stronger phosphate-solubilizing capability was obtained, which belonged to Bacillus genus, as identified by transmission electron microscope and DNA molecular approaches. A culture experiment was conducted to study the phosphate-solubilizing capability of the B25 within 168 h and the variations of the medium pH and B25 growth as well as the phosphate-solubilizing capability of B25 under different culture conditions. A weak correlation was observed between the phosphate-solubilizing capability of B25 and the medium pH. The B25 displayed a better phosphate-solubilizing capability when the carbon source was glucose, medium initial pH was 7.0, and culture temperature was 30 degrees C.


Assuntos
Bacillus/isolamento & purificação , Bacillus/metabolismo , Fosfatos/metabolismo , Microbiologia do Solo , Bacillus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Fosfatos/química , Rizosfera , Solo/análise , Solubilidade
4.
Appl Microbiol Biotechnol ; 93(4): 1769-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21808969

RESUMO

In this work, we investigated the anaerobic decolorization of methyl orange (MO), a typical azo dye, by Shewanella oneidensis MR-1, which can use various organic and inorganic substances as its electron acceptor in natural and engineered environments. S. oneidensis MR-1 was found to be able to obtain energy for growth through anaerobic respiration accompanied with dissimilatory azo-reduction of MO. Chemical analysis shows that MO reduction occurred via the cleavage of azo bond. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction of decolorization rate by 80%, compared to the wild type. Knockout of cymA resulted in a substantial loss of its azo-reduction ability, indicating that CymA is a key c-type cytochrome in the electron transfer chain to MO. Thus, the MtrA-MtrB-MtrC respiratory pathway is proposed to be mainly responsible for the anaerobic decolorization of azo dyes such as MO by S. oneidensis.


Assuntos
Compostos Azo/metabolismo , Shewanella/metabolismo , Anaerobiose , Metabolismo Energético , Deleção de Genes , Redes e Vias Metabólicas/genética , Oxirredução , Shewanella/genética , Shewanella/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...